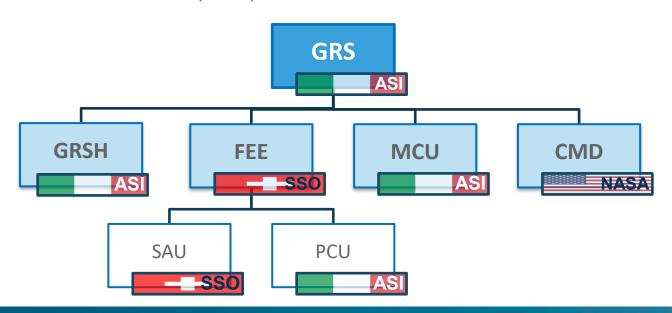


Dec 4th 2025, Paolo Sarra

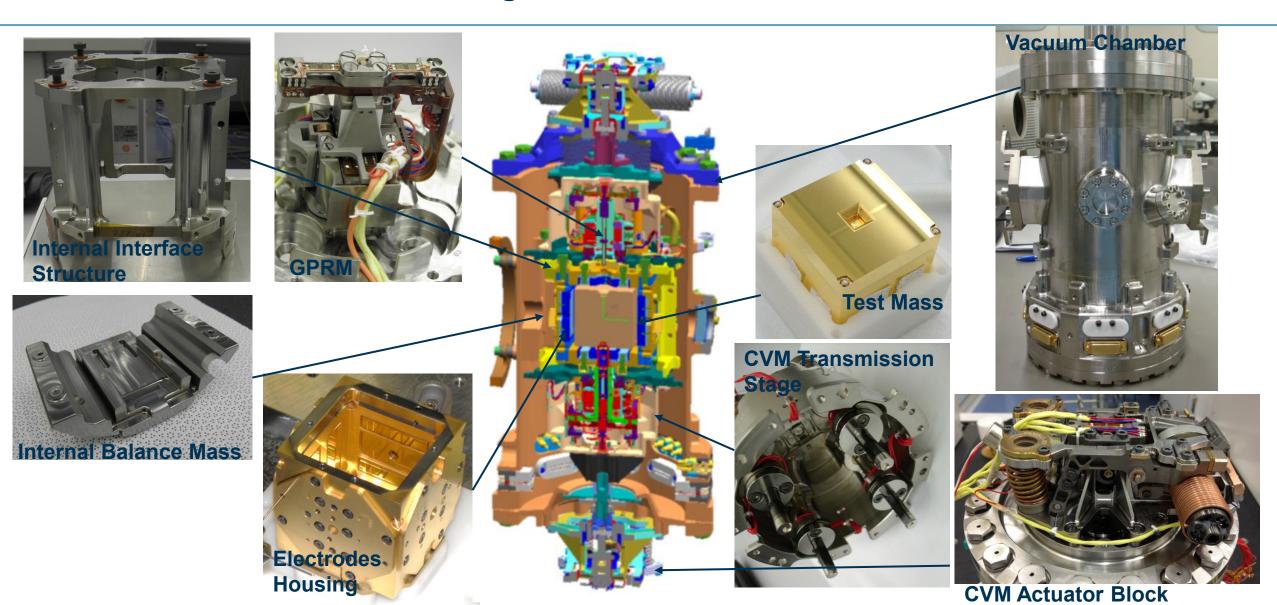
Istituto Nazionale di Fisica Nucleare

SPACE SYSTEMS

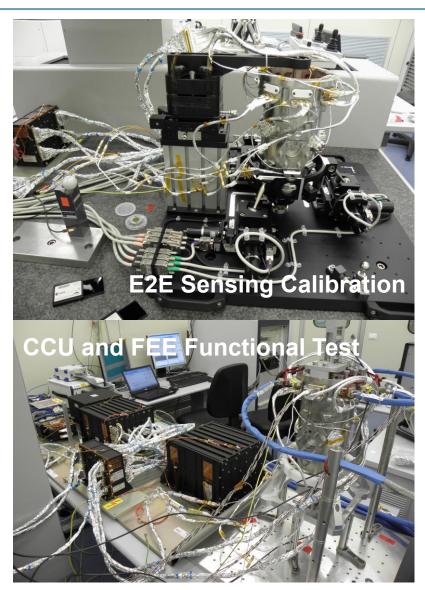
The heritage of LISA Pathfinder for the development of the Gravitational Reference System for LISA

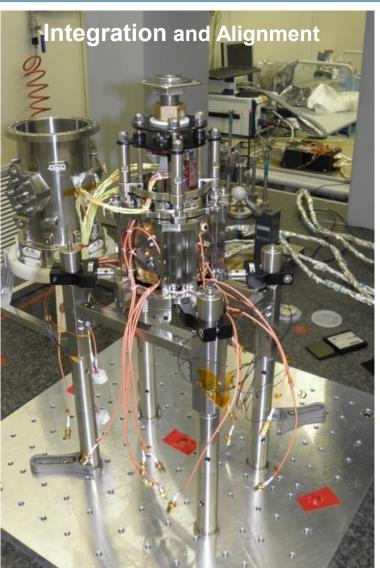

OHB Italia: from LPF to LISA

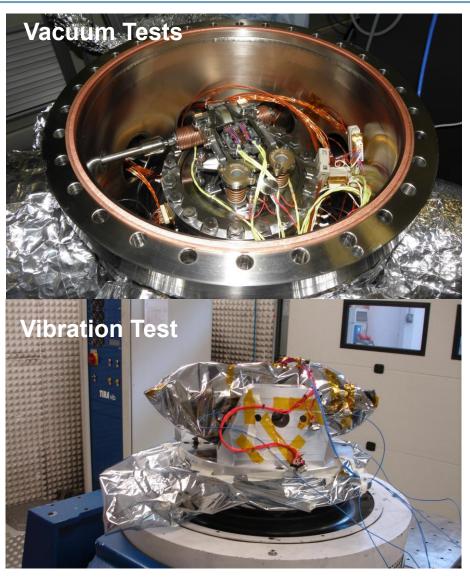
- OHB Italia provided support to GRS PI Team in the design, development, and verification of the LPF Gravitational Reference System (aka Inertial Sensor System)
- For LISA the GRS Italian contribution is further extended:
 - → GRS Head full unit including mechanisms
 - → Mechanism Control Unit (MCU)
 - → Power Conditioning Unit (PCU) of the GRS Front End Electronics (FEE)

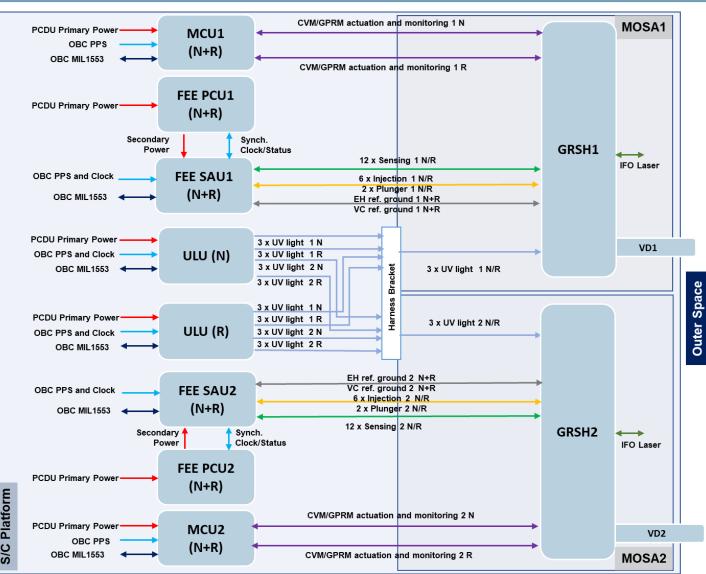


LPF Inertial Sensor Head Design

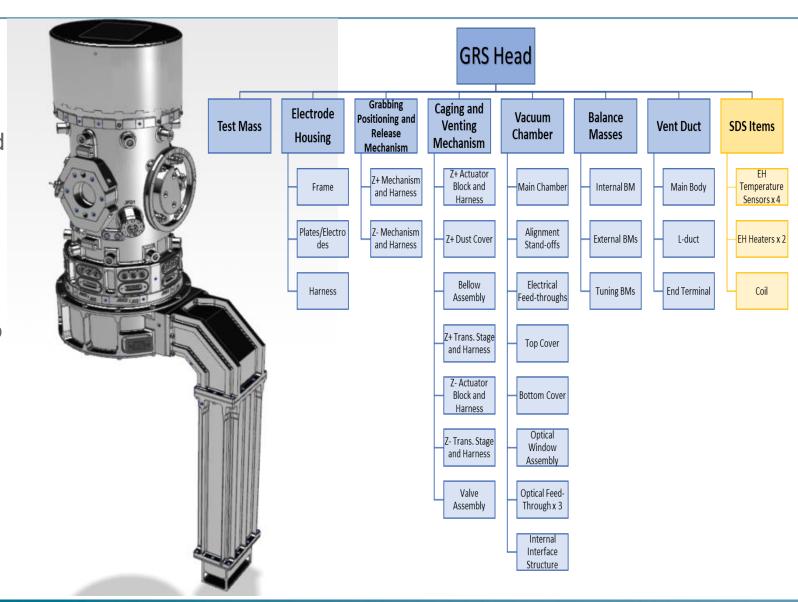



LPF Inertial Sensor Integration and Tests at OHBI

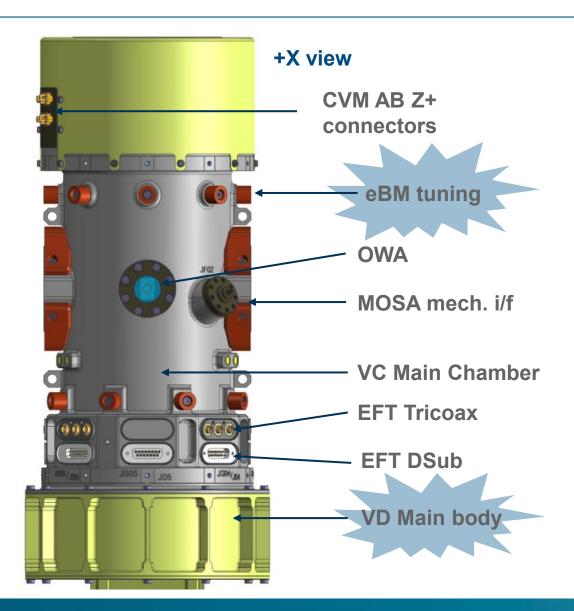


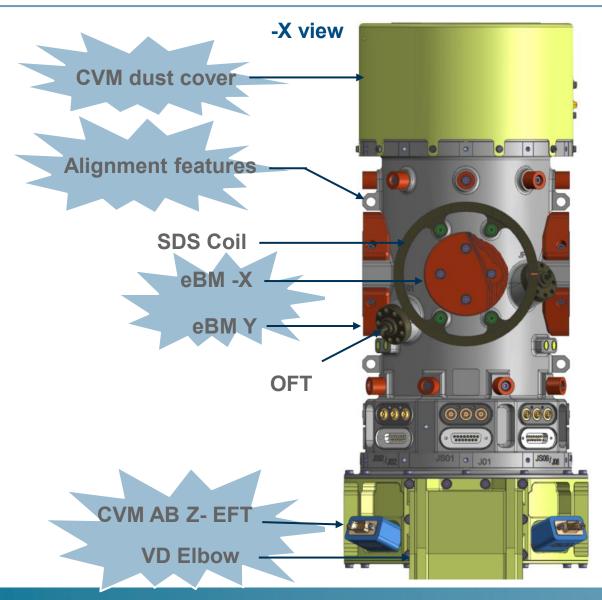

GRS: what to adapt for LISA

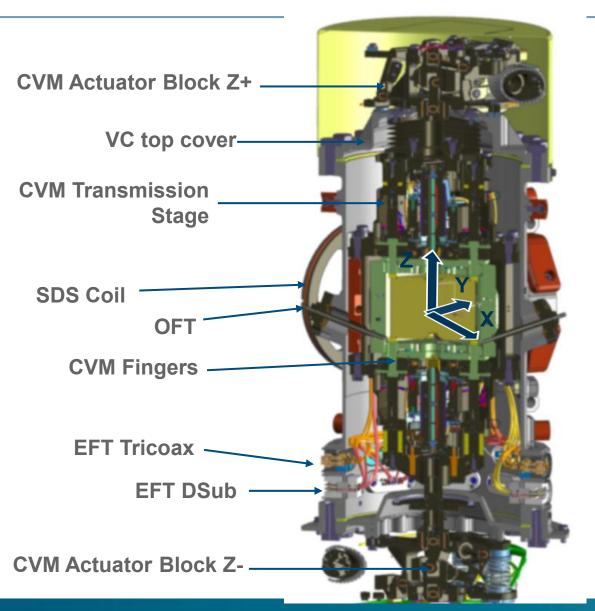
- The successful LPF mission has demonstrated that the LPF GRS design is mature for LISA mission.
- However, a full re-build of the LPF GRS units is not compatible for LISA.
- Design modifications are necessary to comply with the specific LISA mission requirements, such as the longest on-ground storage and mission duration, and to be compatible with LISA MOSA and S/C.
- GRS maintain the same LPF architecture, but:
 - ULU implements LEDs technology replacing Hg Lamps
 - → FEE inherits high-performance capacitive sensing with increased electrostatic actuation
 - MCU combine in a single unit both mechanisms drivers with improved TM release control

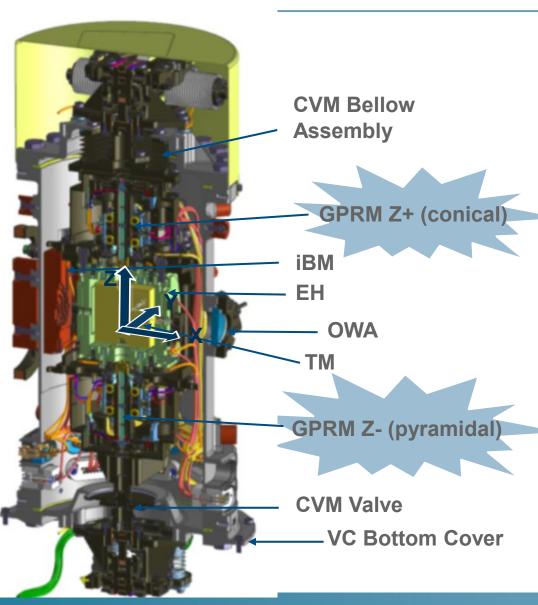

GRS Head: what to adapt and improve for LISA

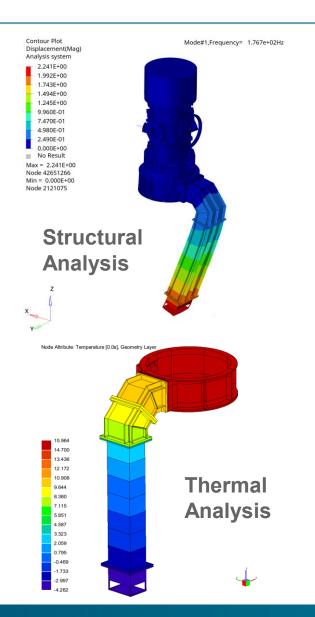
- GRSH design largely inherited by LPF
- Main design upgrade wrt LPF:
 - → <u>Vacuum:</u> hermetic and hard mounted VD to GRSH VC, on ground static vacuum minimizing water permeation through VV to preserve GRSH internal outgassing rate,
 - → <u>Self-gravity:</u> implementation of a new balance masses kit, optimized to new requirements,
 - → TM release: design upgrade of GPRM, in parallel investigated to implement a more robust release also in consideration of an autonomous operation

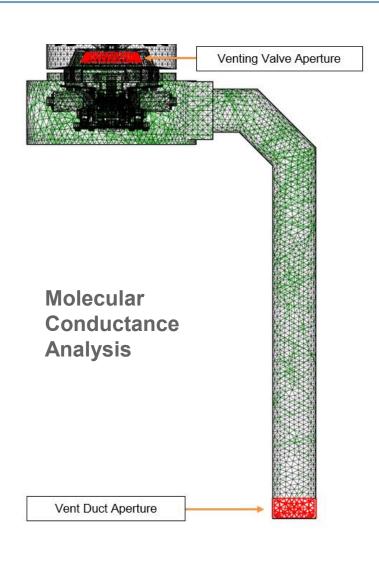


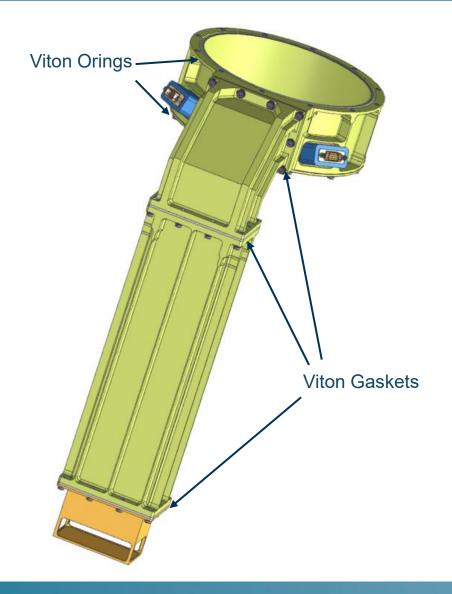

LISA GRS Head Design at PDR

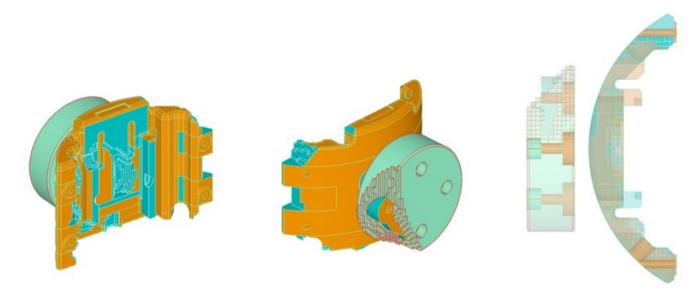


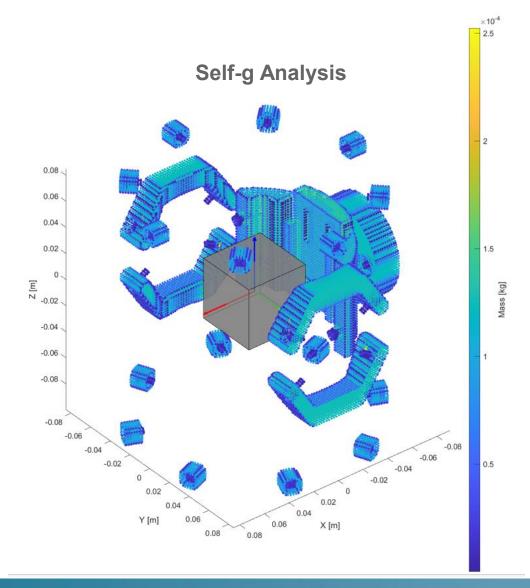

LISA GRS Head Design at PDR



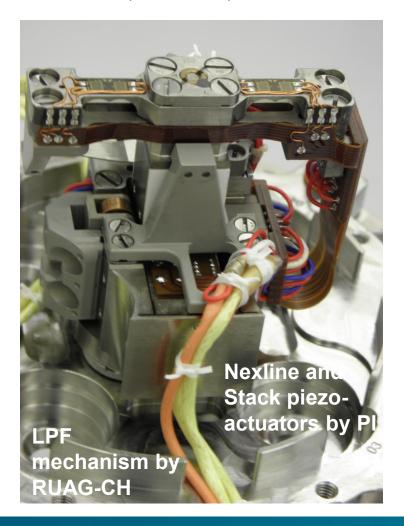

Vent Duct: a new design for LISA

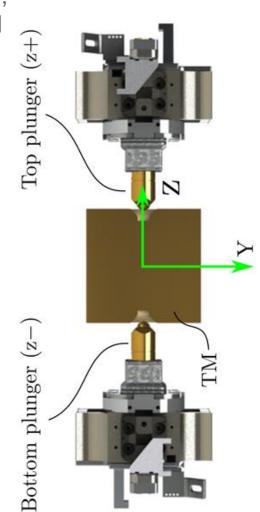



Balance Mass: a more accurate analysis for LISA

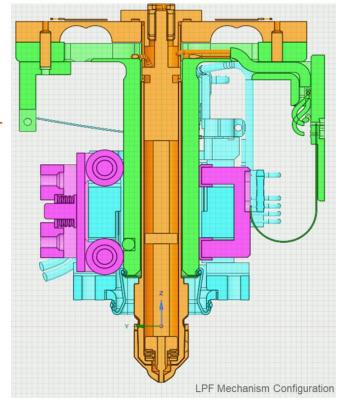


- Mass model for GRSH generated to comply to more stringent self-g requirements: DC forces, torques and stiffness
- Self-g Balancing: IBMX, EBMX duly shaped to achieve balancing while keeping torque and stiffness within budgets
- No need of EBMY for the applicable Balancing target

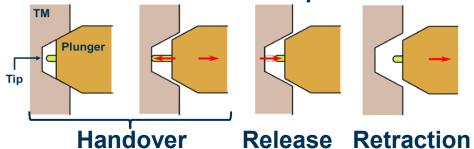

Grabbing Positioning and Release Mechanism



GPRM is composed of 2 mechanisms, that Grab, Position, and Release the TM



Moving Part:


- Linear Runner
- Plunger unit
 - Force Sensor
 - Piezo Stack
 - Release Tip

Fixed Part:

- Piezo-Walk Actuator Unit
- Position Sensor
- Side-Guiding
 - Fix Sliders
 - Flex Rollers

TM Release Steps

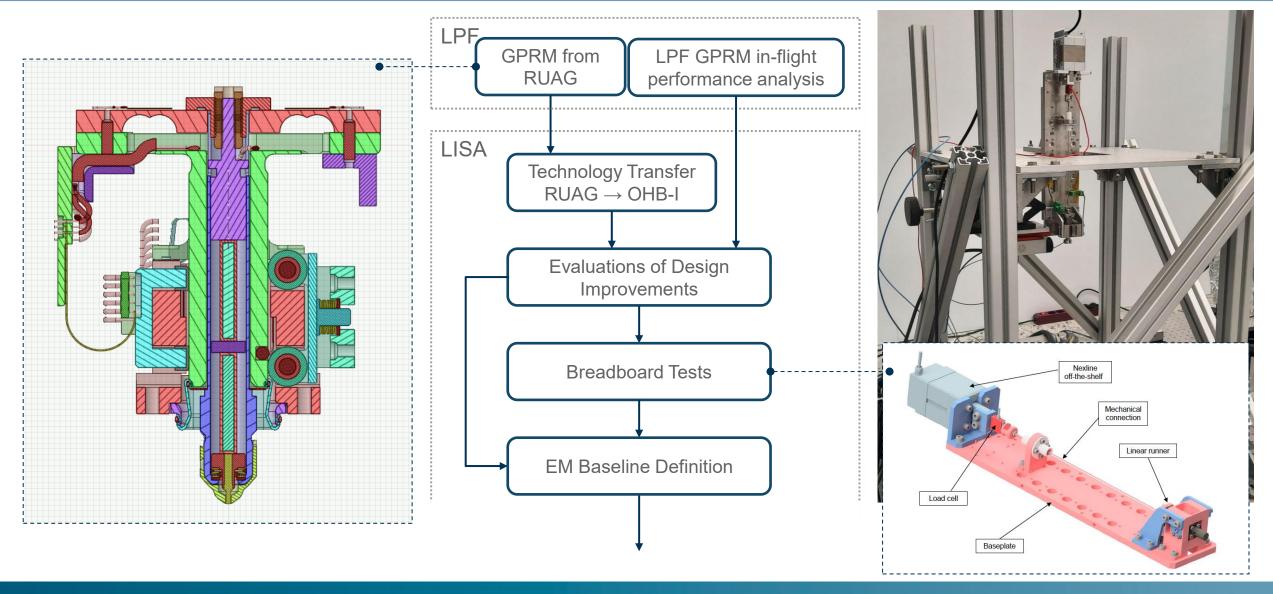
GPRM Design Improvements for LISA: Why

Experimental flight results:

- → 46 TM releases performed for each TM at the end of mission
- → very different results for TM1 and TM2
- Analysis of LPF in-flight data suggests that plunger impacts the TM at release
- Main identified issues:
 - → Low TM-to-plunger gap
 - → Lateral motion of the plunger at the handover/release/retraction phases, plunger vibration
 - → Unreliable preload at release due to noisy force sensor

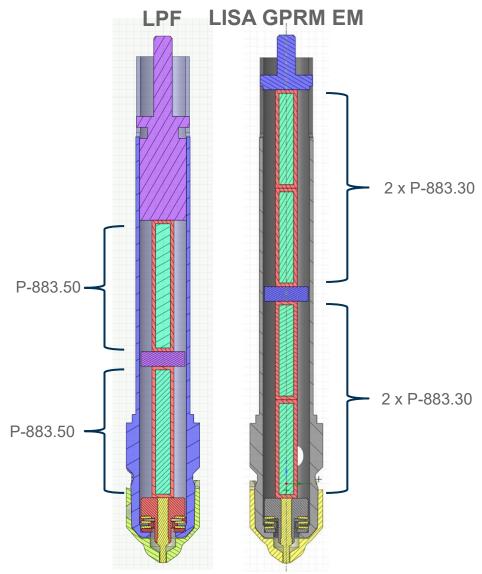
	TM1 P	re-Release	State [m] /	[rad]				TM	1 Rele	ease Velocity [um/s] / [urad/s]	TM2 Pre-Release State					TM2 Release Velocity [um/s] / [urad/s]					
1	v1 z	1	the1	eta1	phi1	x1 y1	the1			Comments	Z	2 1	the2	eta2	phi2	x2 y2	22	the2	eta2 p	nhi2	Comments
8.2E-06	-4.6E-05	8.8E-07	-1.9E-04	3.9E-04	1.8E-04	<1 <1	<1 <60	<60	<60		15	1.0E-05	1.4E-04	-1.2E-03	2.5E-03		-10)			Followed -Z Plunger
1.2E-05	-8.0E-05	-2.2E-06	-4.5E-04			<1 <1		<40	<40		15	6.8E-06	1.8E-04	-1.2E-03	3.4E-03		-4)	860		
1.5E-05	-8.0E-05	-1.4E-06	-4.5E-04	6.2E-04	7.7E-05	<1 <1	<1 <60	<60	<60		15	-1.2E-06	-8.9E-06	-1.2E-03	2.6E-03	0	37 -6	5 0	0	0	
1.3E-05	-8.0E-05	-3.4E-06	-4.3E-04		-4.2E-05			<75			15	8.6E-07	6.3E-05	-1.2E-03	3.6E-03	6 -3	3.3 -	200	200	-1400	
1.3E-05	-7.9E-05	-4.1E-06	-4.5E-04			<1 <1		<75			15	2.0E-07	1.5E-05	-1.3E-03	2.9E-03	3 <1	<1	-83	308	-473	
1.2E-05	-7.9E-05	1.3E-05	-3.7E-04			-2 <1	-2 -1		31		15	9.5E-07	-2.4E-05	-1.3E-03	4.2E-03	-10	6.5 -6.	3 -100	-1000	1700	
1.2E-05	-7.8E-05	5.1E-06	-3.8E-04				-3 <200		223		15	2.1E-06	1.1E-04	-1.3E-03	3.1E-03	0	0 -2	0 0	560	0	ETA Lost control after
1.4E-05	-7.9E-05	2.5E-05	-3.9E-04		1.8E-04			0 121	-13		15	-1.5E-06	7.9E-05	-1.3E-03	1.8E-03	4 -	1.5 7.	3 -400	320	-2500	
1.4E-05	-8.0E-05	5.2E-06	-4.0E-04		9.4E-04			0 116	-13		15	1.6E-06	-4.4E-05	-1.2E-03	2.1E-03	5 3	3.2 -	1 45	141	58	
1.4E-05	-7.9E-05	5.1E-06	-4.0E-04		-9.9E-05			0 130	-26		15	-1.2E-06	7.1E-06	-1.2E-03	1.4E-03		6 -3				Impacted in Z
	-7.9E-05 -8.0E-05	6.6E-06	-3.6E-04		-6.9E-05						15	4.0E-07	-1.2E-04	-1.3E-03	3.5E-03	5	0 -7.		268	-232	I I I Pacced III E
1.4E-05		5.3E-06	-3.6E-04					0 141	-181 -70		15	-2.1E-08	7.6E-05	-1.3E-03	1.6E-03	10	5 -1			-2500	
1.3E-05	-8.0E-05				7.9E-04			1 140			15	5.0E-07	-4.5E-05	-1.3E-03	4.9E-03	5 1				_	
1.6E-05	-8.0E-05	9.1E-06	-3.5E-04			<1 <1		0 88	-40		15								187 135	-289 1250	
1.5E-05	-8.1E-05	6.3E-06	-4.2E-04			-2 <1		0 170	-60			4.0E-07	-4.9E-05	-1.3E-03	2.6E-03						
1.6E-05	-8.1E-05	6.7E-06	-4.6E-04		2.3E-03			2 200	0)	15	8.1E-05	-8.3E-04	-1.1E-03	-2.6E-02	-6			0	748	
1.4E-05	-8.1E-05	8.3E-06	-5.1E-04				<1 <40		<40		15	9.2E-07	-7.3E-05	-1.2E-03	-9.9E-04	-6		3 -540	-300	580	
1.9E-05	-8.3E-05	8.1E-06	-3.6E-04			-7 0		0 -300	0	<u>)</u>	15	1.6E-06	-1.1E-04	-1.3E-03	4.6E-03	3		0 0			Stopped, but lost cont
1.5E-05	-8.3E-05	6.4E-06	-3.0E-04			-7 <1		1 -270	-47	<u>'</u>	15	5.1E-05	-3.2E-04	-1.1E-03	-1.6E-02	0	0	0 0	0 :	10000	
1.7E-05	-8.4E-05	7.7E-06	-2.9E-04		2.8E-03	<1 <1	<1	0 51	0	1	15	8.7E-05	-1.7E-04	-1.4E-03	2.7E-02	4 1	.2 -	5 -58	300	-228	
2.3E-05	-8.1E-05	7.4E-06	-4.1E-04	4.8E-04	1.2E-03	-6 -2	-6 -6	5 -315	-52	<u>!</u>	15	5.3E-07	-1.8E-04	-1.3E-03	2.2E-03	-12	11	3 -340	13	-3300	
1.7E-05	-8.5E-05	9.2E-06	-3.0E-04	7.8E-04	7.5E-04	0 0	0	0 0	1910	Something very strange happened on t	15	3.3E-07	-1.7E-04	-1.3E-03	2.8E-03	6	0	0 0	-250	0	
2.1E-05	-8.6E-05	9.2E-06	-3.0E-04	6.8E-04	1.4E-03	-6 <1	-7 2	3 -330	-42		15	-1.1E-07	-1.5E-04	-1.3E-03	3.0E-04	4 :	.4 -4.	-77	95	290	
1.3E-05	-8.5E-05	8.6E-06	-3.9E-04	6.0E-04	-1.2E-03	<1 <1	<1 <40	<40	<40		15	7.0E-07	-1.3E-04	-1.3E-03	3.0E-03	8	0 3.	3 0	448	0	
1.7E-05	-8.4E-05	9.9E-06	-4.3E-04	8.3E-04	-1.7E-04	<1 <1	-3 3	0 52	-30		15	6.2E-07	-1.7E-04	-1.3E-03	2.9E-03	5	7 -	7 -256	211	60	
1.5E-05	-8.7E-05	7.8E-06	-2.9E-04	8.6E-04	6.6E-04	0 0	0	0 0	-1000	Completely not understandable	15	2.7E-07	-1.1E-04	-1.2E-03	4.9E-03	6	0 -	5 0	220	-187	
1.5E-05	-8.4E-05	7.6E-06	-3.5E-04	7.7E-04	1.3E-03	<1 <1	<1 1	3 72	-77		15	1.7E-06	-1.4E-04	-1.1E-03	4.2E-03	3	10 7.	3 1210		-1520	
1.6E-05	-8.4E-05	7.9E-06	-2.5E-04	5.1E-04	1.6E-04	<1 <1	-3	0 -68	-55		15	1.9E-06	-1.3E-04	-1.3E-03	1.2E-03			200		<200	
1.5E-05	-8.4E-05	5.5E-06	-3.0E-04	4.6E-04	-3.0E-04	<1 <1	<1 4	0 60	-21		15	6.3E-07	-1.5E-04	-1.0E-03	-2.6E-03		5.3 -7.			-3500	
1.2E-05	-8.4E-05	6.9E-06	-2.7E-04	7.1E-04	6.8E-04	-2 <1	-1 <100	<100	<100		15	1.2E-06	-1.5E-04	-1.3E-03	2.5E-03			-1200	0		Impacts
1.5E-05	-8.4E-05	6.6E-06	-2.7E-04	6.5E-04	-8.9E-04	<1 <1	<1 1	7 31	10		15	1.0E-06	-9.3E-05	-1.3E-03	2.3E-03	-	27 1		200		Impacts
1.7E-05	-8.6E-05	1.1E-05	-1.9E-04		1.1E-03		0 -106	0 0	0	Impacts											Impacts
1.6E-05	-8.5E-05	7.1E-06	-1.8E-04			<1 <1		6 41	-10	pacto	15	1.3E-06	-1.2E-04	-1.2E-03	-7.5E-04	4	0 4.		0	547	
1.6E-05	-8.6E-05	6.9E-06	-1.8E-04				1.2 <100				15	2.2E-06	-8.5E-06	-1.1E-03	2.1E-04		5.2 5.			-1600	
1.4E-05	-8.4E-05	9.6E-06	-2.5E-04			<1 2			59		15	9.0E-05	-1.0E-04	-1.1E-03	3.3E-02	4	0 -2.		0	-568	-
1.6E-05	-8.6E-05	7.2E-06	-2.0E-04			-2 -2					15	1.7E-06	-1.6E-04	-1.1E-03	1.9E-03		19 -		253		Impacts
1.9E-05	-8.4E-05	7.2E-06 7.9E-06	-2.7E-04		-5.8E-05			5 -32	39		15	2.1E-06	-1.1E-04	-1.3E-03	-4.2E-04		2.3 -5.		300	800	
1.7E-05	-8.4E-05	7.2E-06	-2.7E-04			<1 <1			<40		15	2.3E-06	1.8E-05	-1.3E-03	9.3E-04		7.5 -2		-778	450	
1.7E-05	-8.4E-05	7.2E-06 7.3E-06	-1.8E-04			<1 <1		5 60	13		15	1.7E-06	-6.7E-05	-1.1E-03	-3.0E-04	1 4	1.5 -	2 -260	<100	205	
1.1E-05	-8.4E-05	8.3E-06	-1.8E-04				<1 <100				15	3.4E-06	-1.3E-04	-1.2E-03	4.8E-03	-33 -1	29 -12	L 6700	1700	-6345	
											15	4.5E-05	-9.8E-04	-5.8E-04	-6.2E-03	8 <1		7 <100	-313	0	
1.7E-05	-8.5E-05	9.5E-06	-2.2E-04			13 -2		4 330	-95	<u> </u>	15	1.6E-06	-1.2E-04	-1.2E-03	4.8E-03	3	41 -1	-1210	140	830	Impacts
1.7E-05	-8.5E-05	7.9E-06	-2.3E-04		-6.3E-04			2 -300	171		15	1.8E-06	-1.6E-04	-1.2E-03	3.7E-03	-1	1	1 100	-80	-800	
1.6E-05	-8.5E-05	8.7E-06	-2.1E-04			<1 <1		4 38	-25		15	2.6E-06	-1.8E-04	-1.1E-03	4.3E-03		7 -5.			-127	
1.6E-05	-8.5E-05	7.3E-06	-2.3E-04			-3 <1			-24		15	3.0E-06	-9.1E-05	-1.2E-03	2.7E-03	0) 0	0	3170	
1.6E-05	-8.4E-05	8.4E-06	-1.9E-04		-1.2E-03			6 16	52		15	8.8E-05	-1.7E-04	-1.1E-03	3.2E-02	5 3		7 113	320		Extreme xtalk X-PHI
1.8E-05	-8.4E-05	8.2E-06	-2.7E-04			<1 <1		5 58	-286	<u> </u>	15	1.4E-06	-5.3E-05	-1.1E-03	4.6E-03			3 -249			Impact during slow plu
1.6E-05	-8.6E-05	7.4E-06	-2.3E-04	5.2E-04	5.6E-03	3 <1	9 7	5 -215	-124	Impact during slow retract	13	1.4E-UB	-3.3E-U5	-1.ZE-05	4.DE-U3	4 -7	s.⇔ Z.	-249		-1722	umbacr on unk 210m bit

LPF data: courtesy of ESA


Need to improve the GPRM design for a safe, reliable and autonomous TM release.

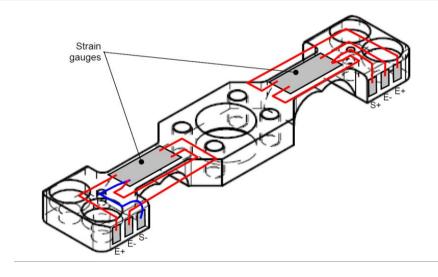
GPRM Design: road from LPF to LISA

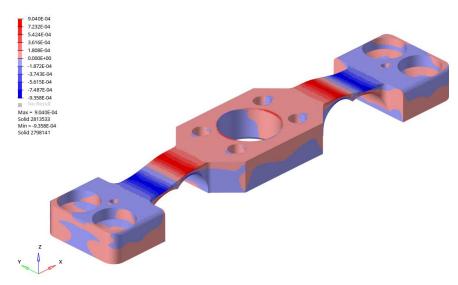
GPRM Main Design Improvements (1)



- A longer tip stroke is a fundamental to increase the gap and reduce the risk of TM re-contact after release
- Change of release tip piezoelectric actuator
 - → 2 glued COTS Actuators per redundancy
 - → Increased stroke by ~50%
 - → Maximization of LPF heritage: minor mechanical changes
- Single COTS Actuators with same length under development at PI

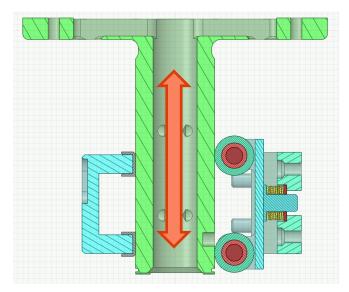
GPRM Main Design Improvements (2)

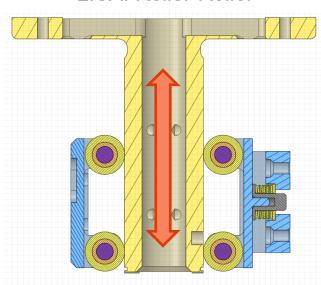


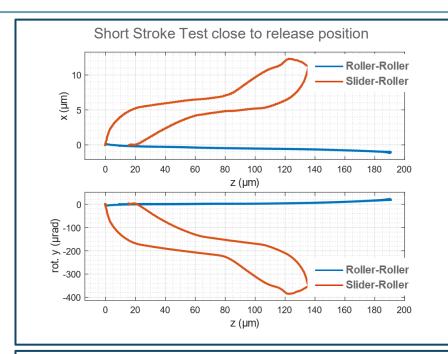


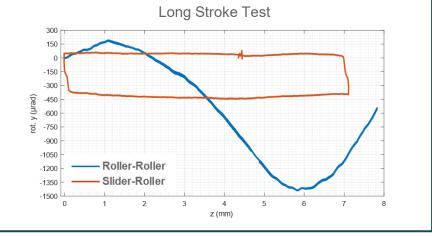
- Mechanism operation relies on force reading
 - → The lower the preload at TM release the lower the impulse
- Force sensor optimized by decreasing thickness of deformable parts where strain gauges are located
 - → Increased (doubled) sensitivity
 - → Reduced stiffness has no detrimental effect on mechanism performance
 - → Low Noise Sensor readout (implemented on MCU)

GPRM Main Design Improvements (3)

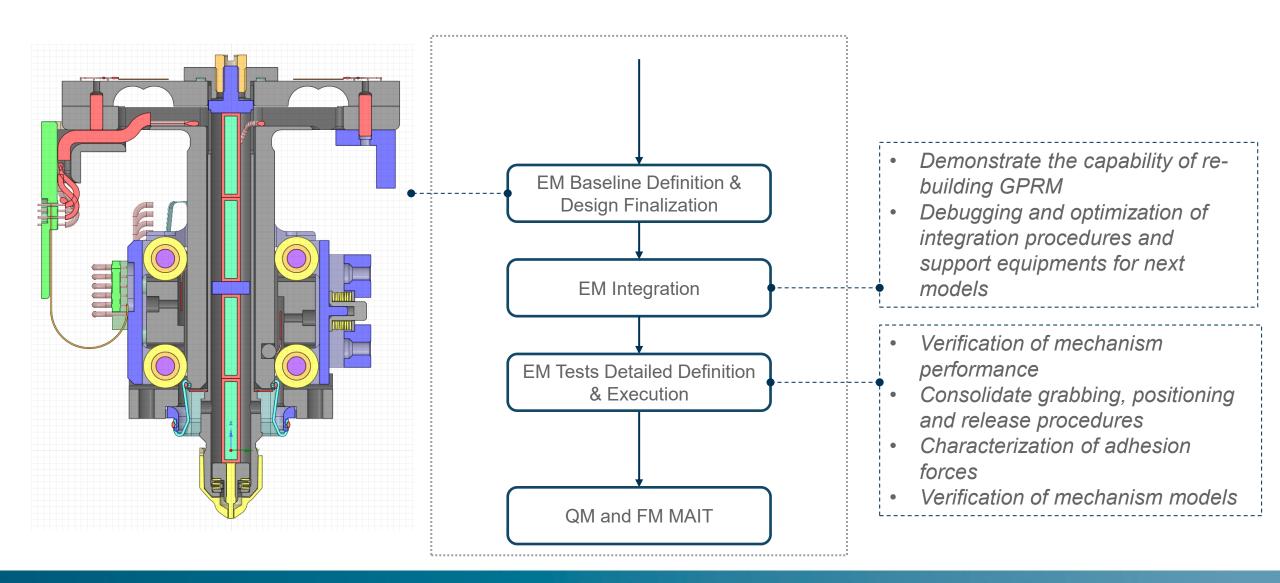




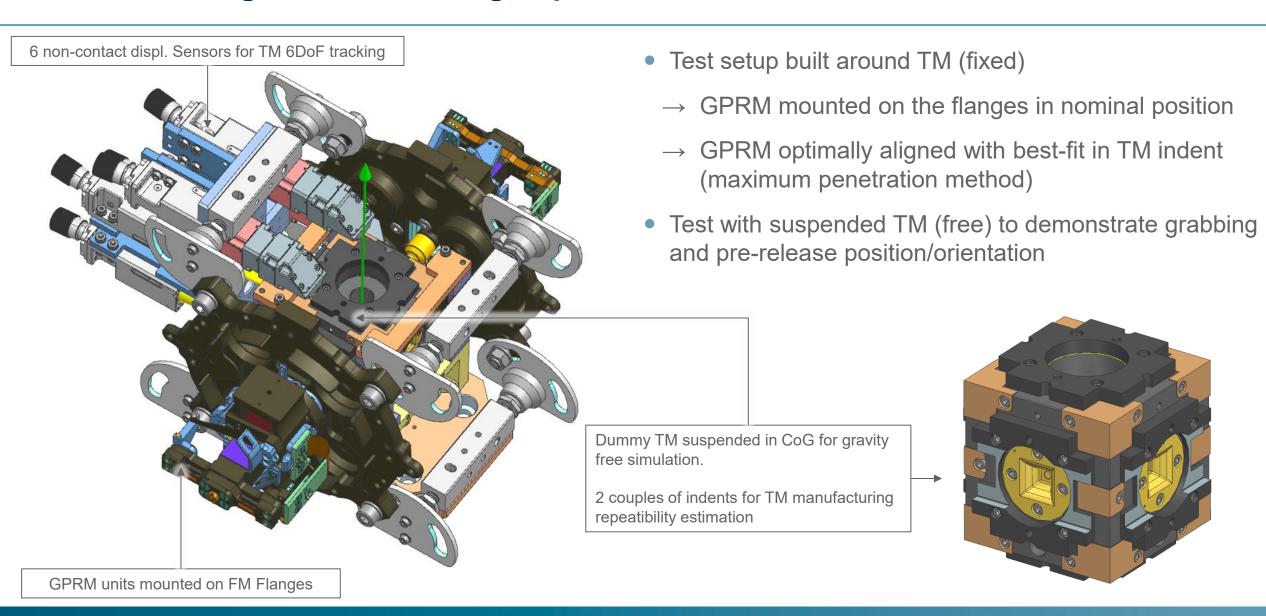

- Side-movement at motion inversion causes plunger-TM impact
 - → Configurations tested on BB model
 - → Roller-roller is new baseline for LISA
 - Lower lateral movement close to TM with lower risk of re-impact
 - Higher movement on long stroke due to roller run-out does not affect release performances


LPF: Slider-Roller

LISA: Roller-Roller



GPRM Status: Current and Next Activities



GPRM Co-alignment & Testing Improvements

